
Modeling and Bayesian Inference of Traceability in
Food Supply Networks
Xue-Ting Zhang1, Jia-Hao Su1, Ming Fang1, Jiang Jiang1, Ying-Wu Chen1, and Xin
Lu1,2,3,*

1College of Information System and Management, National University of Defense Technology, Changsha, 410073,
China.
2Department of Public Health Sciences, Karolinska Institutet, Stockholm, 17177, Sweden.
3Flowminder Foundation, Stockholm, 17177, Sweden.
*xin.lu@flowminder.org

ABSTRACT

The centralization of food production and globalization of trade have made foodborne disease a widespread public health
problem in both developed and developing countries. Moreover, the complexity of Food Supply Networks (FSNs), together with
the high cost of foodborne illness, demonstrates the acute need of innovative solutions to identify the outbreak source. By
modeling the contamination procedure through a three-layer network, we construct the backward tracing matrix based on the
transaction data with Bayesian Inference. Then, we propose Traceability Entropy (TE) as an estimator to measure the ability of
supporting source identification. Additionally, we design a Tracing-back Algorithm to reduce the identification uncertainty where
TE contribution and choosing strategies help ensure the best quarantine retailers. In the case study of Nanjing city from the
Important Product Traceability System (IPTS) implemented by Commerce Department, we retrieve the quarantine sequence
when one retailer is observed infected, and further verify the effectivity and generality of this algorithm by simulation of each
retailer infected in the FSN. The statistical result reveals that optimistic strategy has better performance than pessimistic and
hybrid strategy, where over 60% initial contaminated retailers narrow down the source identification to two farms within three
steps.

Introduction

In many real world systems with spreading dynamics, such as internet virus transmission networks1, human contact networks2,
food supply chains (FSCs)3, it is critical to develop models and algorithms to improve the ability to trace the source of
contaminated food or spreading diseases4. Traceability is of great significance for both public health management and
emergency risk analysis, as damage can be prevented or reduced if the contamination source is identified efficiently5–7.

Food as necessitiy of daily life affecting the national economy and human livelihoods, FSCs have long been the center of
traceability studies. According to International Standard Organization (ISO 8402), the general definition of traceability is ”the
ability to trace the history, application or location of an entity by means of recorded identifications”8. However, due to the
globalization of food circulation and the complexity of food production, the complexity of network9 aggravates numerously,
making the traceability problem both costly and computationally intensive10.

In order to improve the food safety supervision, many countries have made efforts in both legislation and technology in
the past years. Nowadays, mandatory food traceability laws are being enforced and the European Union has realized this
by introducing the General Food Law (GFL)11, 12. Accordingly, traceability data can be mandatory or optional, for which
mandatory data include product ID, supplier ID, quantity, prize, buyer ID and optional data include supplier’s information,
receipt date, country of origin, date of pack, buyer’s name, etc.13 When it comes to the U.S., Food Safety Modernization
Act (FSMA) was signed into law to expand the authority of the U.S . Food and Drug Administration14, 15, such as mandatory
recall authority and the responsibility to develop a third-party audit system for the certification of imported foods, increasing
the frequency of mandatory inspections, developing regulations for preventive control plans, establishing a product tracing
system16.

A variety of technologies of collection, storage, analysis and retrieval of transmission data empower the traceability of
food items and ingredients among the distribution networks17, 18, such as alphanumerical codes, bar codes, and radio frequency
identification (RFID)19, 20. The food supply chain tracking information thus allows investigators to build early warning models
for detecting abnormities of food safety issues21, and tracing back contaminations as to support emergency management
in food safety control22, 23. These studies point out that developing effective and full chain Important Product Traceability



System (IPTS) is quite complex, which requires theoretical analysis of the uncertain information from methodological aspects24.
These methods include mathematical models for identifying contamination sources25, planning models for optimizing food
distribution26, 27, and simulation models for epidemic transmission28.

In recent years, the PRC Ministry of Commerce constructed the IPTS in more than 13,500 corporations and 200,000 shops,
involving meat, vegetables, Chinese medicinal crop and wine. More than 2 billion items of data have been collected so far, and
the IPTS receives 3 million items of daily data. For a single product (e.g., pork), this system is an integrated supply information
chain comprised of segments of household breeding, slaughter, wholesaler, retailer, etc.29 Traditional researches focus on
qualitative description of the traceability system or analyze the traceability problem from the linear supply chain view. In fact,
for many IPTS with complicated connected relationships, it is easy to observe the symptoms of infection but difficult to identify
the contamination source30, 31.

In this paper, we propose a tracing back algorithm to ensure the potential source by quarantine process with the estimator
(traceability entropy contribution) and several rational choosing strategies. Furthermore, Monte-Carlo simulation on the real
pork supply network of Nanjing city during 2015 reveals that the tracing back algorithm reduces the traceability uncertainty to
an acceptable range within three detection steps, and we find the best choosing strategy is optimistic strategy by comparison of
stochastic contamination conditions. Overall, we elaborate how, and to what extent Bayesian Inference of T E identifies the
outbreak source in FSN.

Results

Tracing Back Model with Bayesian Inference on Food Supply Network
Food supply chain is composed of a wide diversity of producers, processors, distributors and retailers32, for which the spatial
distribution makes inspection and quarantine work harder. Since the distribution processes of one product from production to
consumption can vary considerably, without loss of generality33, we take a sample model of pork by aggregating the underlying
transaction network into the categories of Farms (F), Slaughters (S), and Retailers (R). For simplification, pork is produced by
farms, transported to different slaughters, mixed with raw pigs from other farms, and then sold to customers at retailers (see Fig.
1). It is thereby straight forward to extend the current model to more layers.34.

Assume food in each node is mixed intensively, the probability of infection is then proportional to the amount of contami-
nated food. Given the amount of pork produced in the ith farm is fi, 1≤ i≤ I, where I is the total number of farms, and the
pork received at the jth slaughter is s j, 1≤ j ≤ J, where J is the total number of slaughters, the consumption amount of the kth
retailer is rk,1≤ k ≤ K, where K is the total number of retailers. Let F , S , R be the row vectors consist of the product amount,
and let FS be the priori transition probability matrix where each element f si j denotes the proportion of pork transporting from
farm i to slaughter j, then SR is the priori transition probability matrix where each element sr jk denotes the proportion of pork
transporting from slaughter j to retailer k. Then the calculation formulas are as follows: F = [ f1, f2, · · · fi, · · · , fI ],1≤ i≤ I;
S = F×FS = [s1,s2, · · ·s j, · · · ,sJ ] ,1≤ j ≤ J; R = F×FS×SR = [r1,r2, · · ·rk, · · · ,rK ] ,1≤ k ≤ K, where

FS =


f s11 f s12 · · · f s1J

f s21 f s22 · · · f s2J
...

...
. . .

...

f sJ1 f sJ2 · · · f sIJ

 , (1)

SR =


sr11 sr12 · · · sr1K

sr21 sr22 · · · sr2K
...

...
. . .

...

srJ1 srJ2 · · · srJK

 . (2)

Based on the above network model of supply chain, we can analyze the tracing back problem with Bayesian Inference35, 36.
Given an observation of contamination at retailer layer and some knowledge of the topology and fluxes about the FSN, it is
possible to induce the probability of each farm to be the contamination source. Bayesian Inference is a statistical approach to
calculate the probability of one event based on conditions that might be related to it37. Known that FS is the priori probability
matrix from F to S, then the posterior probability of SF can be calculated by the method of Bayes Inference. Also,

P(Fi
∣∣S j ) =

P(Fi)P(S j |Fi )

P(S j)
=

Fi×FSi j

S j
= SFji, (3)
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Figure 1. The Farm-Slaughter-Retailer Network and the schematic of product and traceability information flow. The
traceability information is shared in two directions, and we focus on the backward tracing traceability for the source
identification problem.

P(S j |Rk ) =
P(S j)P(S j |Rk )

P(Rk)
=

S j×SR jk

Rk
= RSk j. (4)

Assume there is only one contamination source (Fi) in the pork supply network, then the posterior probability of Rk being
the outbreak source is:

P(Fi |Rk ) =
J

∑
j=1

P(S j |Rk )×P(Fi
∣∣S j ) =

J

∑
j=1

RSk j×SFji =(ek
T ×RS)× (SF× ei) = RFki. (5)

Finally, the posterior probability calculation can be extended to the condition of any Retailer from any Farm by matrix
calculation, as RF = RS×SF .

Tracing Back Algorithm based on Traceability Entropy
Tracing Back Algorithm aims to solve the source identification problem by detecting the potential retailers. First, we shall
figure out how the product and information spreads38 in the traceability system (Fig. 1), after that we depict the tracing back
procedure in mathematical model with Bayesian Inference, and then carry out the quarantine results to reduce the identity
uncertainty with the least cost. In brief, there is one retailer detected as initial infected observation, then we shall detect the
products in other retailers to affirm the real outbreak farm by tracing back algorithm. Traceability Entropy (T E) is proposed
to evaluate the uncertainty during the source identification process39(see Methods), and contribution (∆T E) of each retailer
demonstrates how well one more detection enhances the network traceability.

Known that Rk1 is infected, and the potential contamination set of Rk1 is ΩRk1
, it is capable to find the potential contamination

sub-network through tracing backward and tracking forward, and the process of which is presented as Fig. 2.
The tracing back algorithm takes place in the following steps:
Step 1: Given the initial retailer Rk1 as the contamination observation;
Step 2: Acquire the potential contamination set ΩRk1

, and the number of which is nk1 ;
Step 3: Calculate T E and ∆T E for each non-detected retailers in ΩRk1

;
Step 4: Choose the retailer with best contribution as next detected retailer by optimistic/ pessimistic/ hybrid strategy, retrieve

the retailer number of which is kt , save it in the quarantine sequence tree (see details in case study);
Step 5: Ensure the quarantine result as True/False, save the T E of the network and update the new probability matrix;
Step 6: Check whether it reaches any of three terminate conditions: the traceability entropy is less than 1; the traceability

entropy does not decline anymore; or the number of iteration reaches the default value. If not, go back to Step 2. Otherwise go
to Step 7;

Step 7: Output the quarantine sequence tree of Rk1 , the final network traceability entropy, and the potential source farms;

3/11



Figure 2. The tracing and tracking procedure of contaminated sub-network. Supposing the initial infected observation
is red, then the potential contaminated sub-network is comprised of yellow and green nodes (we find yellow nodes by backward
tracing and green retailers by forward tracking), here green nodes make up the potential contamination set ΩRk1

.

Figure 3. Weighted degree distribution of Pork Supply Network in Nanjing, which follows a long tail power law.

Case Study
Dataset
For illustration, we retrieve the farm, slaughter, distribution and product circulation data of pork in Nanjing in 2015 from the
IPTS system (including 766,580 items), which allows us building the Food Supply Network, specifically speaking, the pork
supply network. The weighted degree distribution of this FSN follows a heterogeneous long tail power law as shown in Fig. 3.

The complexity of tracing back algorithm is OIJR2, and in this case the amount of retailers is 2350, the square of which is
more than 5 million. In order to reduce the calculation complexity, the retailer nodes from and only from the same slaughter are
classified as one cluster and the retailer with the largest degree represents the cluster, since all nodes in the cluster have the
same topological features and only different transaction amount affects T E. The comparison of the network structure before
and after node merging is shown in Fig. 4 , where the new retailers are numbered from 1 to 375.

Quarantine scheme with one infected retailer
Supposing that one retailer is observed contaminated in this real network, we carry out the tracing back algorithm to design an
effective quarantine schemes to ensure the correct source farm based on traceability entropy contribution.

In this case, we calculate the T E of the initial infected retailer 227 as 4.0221, and obtain its potential contamination set
as Ω227 of 338 retailers/retailer clusters. After the first contribution sorting of potential retailers in Ω227, taking pessimistic
strategy as an example, the next chosen retailer Rk2 is number 129, and the detection result is infected or not (True/False). If the
detection result is True, the new T E is 2.5494, and the contribution is 1.4727; if the detection result is False, the new T E is
2.7858, and the contribution is 1.2363.

According to different quarantine results of Rk2 , we can calculate the number of next chosen retailer Rk3 . When the
quarantine result of Rk2 is True, the next retailer Rk3 is number 8. If the detection result of R8 is True, the new T E is 0, and the
contribution is 2.5494; if the detection result of R8 is False, the new T E is 2.5494, and the contribution is 0. On the contrary, if
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(a) (b)

Figure 4. Comparison charts before and after node merging of Pork Supply Network in Nanjing, 2015. (a) The initial
network is heterogeneous before node merging, where retailers are yellow, slaughter are red and farms are blue. (b) The
network after retailers merging is less intensive and complicated.

the quarantine result of Rk2 is False, the next retailer Rk3 is number 129, which is a cluster with new value. If the detection
result of R129 is True, the new T E is 2.5494, and the contribution is 0.2364; if the detection result of R129 is False, the new T E
is 2.7838, and the contribution is 0.0020.

By analogy, we can get a quarantine sequence tree with pessimistic strategy, and also optimistic strategy and hybrid strategy
separately as shown in Fig. 5 .

Comparison of different strategies with stochastic contamination
To further study the generality and robustness of tracing back algorithm, avoiding the specific observation influence, we carry
out stochastic contamination simulation of all 375 retailers/retailer clusters, and calculate the quarantine results.

The process to generate the quarantine sequence tree is as follow: first, calculate the traceability entropy of the contamination
retailer, then choose the next detected observation with maximum contribution; After that, calculate the entropy contribution
according to the quarantine result (T/F), and verify the next detected observation. These steps are repeated until the termination
conditions are met. Ultimately, the algorithm outputs the quarantine sequence tree (as shown above in Fig. 5) and the ultimate
network traceability entropy. Fig. 6 depicts the heat map of pessimistic strategy, optimistic strategy and hybrid strategy after
each detection step, respectively, where the result of optimistic strategy has the overall best result for both different conditions
and different initial infected nodes, and the pessimistic result is the worst.

Further statistical analysis reveals that T E is a good index to depict the network traceability and the quarantine sequence
tree result has realistic significance of source identification and epidemic controlling. After three-step quarantine process, we
find the number and the proportion of initial infected retailers which is able to decrease T E less than 1 in different quarantine
result conditions. The details of different strategies are shown in Tab. 1. Overall, it is obvious that optimistic strategy has better
performance than pessimistic strategy, but all three strategies receive good traceability results.

It is notable that during the quarantine process, there is more contribution of truth detection result than false detection result,
which means ”truth verification is much easier than false verification”. Specifically speaking, if one product is detected as
infectious, this retailer is verified to be infected, then the same source slaughter of all infected retailers is deduced as infected;
however, even if the products detected are not infectious, this retailer is still hard to be verified without any infected risk, which
means the source slaughter cannot be ruled out.

Discussion
By analysis of the Food Supply Network (FSN) with real data in Nanjing (766580 items) from the IPTS, we find that Bayesian
Inference on the 3-layer network model constitutes an effective tracing back algorithm of outbreak source identification, and it
is possible to carry out rational quarantine tree schemes for stochastic contamination. Furthermore, different choosing strategies
of next detected retailer are analyzed contrastively, where optimistic strategy reaches the best result that there is over 60%
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Figure 5. Quarantine sequence tree with optimistic strategy, pessimistic strategy and hybrid strategy

TTT TTF TFT TFF FTT FTF FFT FFF

Pessimistic
Strategy

number (T E ≤ 1) 373 373 373 54 73 31 30 8

proportion 99.47% 99.47% 99.47% 14.40% 19.47% 8.27% 8.00% 2.13%

Optimistic
Strategy

number (T E ≤ 1) 375 375 375 109 367 101 101 8

proportion 100% 100% 100% 29.07% 97.87% 26.93% 26.93% 2.13%

Hybrid
Strategy

number (T E ≤ 1) 375 375 375 109 367 101 101 8

proportion 100% 81.07% 81.07% 25.07% 94.67% 20.80% 22.93% 2.13%

Table 1. Results of different quarantine choosing strategies. The average proportion of acceptable T E(T E ≤ 1) for
pessimistic strategy, optimistic strategy and hybrid strategy is 43.83%, 60.37% and 53.47%, respectively. And the average T E
of the three strategies is 1.3383, 1.0631 and 1.2074, respectively.

probability to decline the traceability entropy less than 1 within 3 steps (meaning that the source is likely between two farms).
In this paper, the FSN is modeled as 3-layer Directed Weighted Acyclical Graph (DWAG), where the transaction data is

applied to build the priority probability matrices, and Bayesian Inference assists generate the posterior probability matrices
of tracing back information. For the purpose of this study, we propose Traceability Entropy to evaluate how the quarantine
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result supports the identification of outbreak source, which is further proved that not affected by the specific observation.
From a realistic perspective, once food crisis breaks out, it would be essential to quarantine the products on sale to ensure the
contamination source40, 41. We henceforth propose the tracing back algorithm to implement quarantine scheme with the best
traceability contribution and scientific choosing strategies adapted from Decision theory. Then, we carry out the quarantine
sequence tree of specific contamination observation and the final T E of the network, providing a scientific method to identify
the outbreak source with the least quarantine cost. Furthermore, the results of different strategies are contrastive analyzed with
stochastic contamination, which is useful to find the best choosing strategy to find next detected object.

Our findings highlight the importance of taking the network structure into account in the study of food supply networks42.
According to the real data from IPTS, further research could focus on more complex scenarios on different types of network, for
example, uniform network, exponential network, scale-free network, homogeneous network, etc.31 The joint effect of various
network parameters (e.g., degree distribution, density, community) on the network traceability also enlarges possibilities for
network optimization studies from another point of view. The IPTS data is day-by-day recorded, we are however limited to the
ignorance of time influence, which is useful to narrow down the uncertainties of potential outbreak sources.

In summary, this paper is, to the best of our knowledge, the first attempt to propose Traceability Entropy as an estimator in
FSN research, and carry out tracing back algorithm applied on a large real FSN data set. Traceability entropy is an effective
estimator reflecting the traceability of the network itself without affected by specific observation. In addition, contribution
and choosing strategies provide a feasible method to design quarantine scheme with high efficiency. Our results not only
show the traceability of FSN can be improved by scientific tracing back algorithm, but also reveal that T E can apply to other
traceability problems involving Directed Weighted Acyclical Graph (DWAG), such as disease contagion, virus infection, or
rumor spreading.

Methods
Traceability Entropy
Entropy is a measure of disorder or uncertainty in the Information Theory43, and Traceability Entropy (T E) is defined in this
paper as the measure for the uncertainty in determining the outbreak source. In the tracing-back case, consider a game where
we are allowed to ask True/False questions until we pinpoint the contamination source farm44. If there is less uncertainty about
Fi, we obtain the value with fewer questions, meaning that the network has higher traceability. For this reason, we can see
traceability entropy as the number of True/False questions we need to ask to identify the correct outbreak source. Turning this
around, 2E is the uncertainty of the source (the number of possible sources).

In term of Rk, the calculation of Traceability Entropy is as follow,

T E(k) =−
I

∑
i=1

P(Fi |Rk ) log(P(Fi |Rk )), (6)

where P(Fi |Rk ) is the posterior probability when Rk is the outbreak source and Fi is the contamination observation.

(a) (b) (c)

Figure 6. Heat map of different choosing strategies. (a) Pessimistic strategy has best performance when the detection
results are most true, but not robust in other conditions. (b) Optimistic strategy has the overall beast effect for both different
conditions and different initial infected nodes. (c) Hybrid strategy fits different conditions better than pessimistic strategy, and
more uniform for different retailers.
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Apparently, when the supply network forms a tree structure, each retailer only receives product from the same farm, T E = 0;
but when the number of links between each layer is maximized and products are equally produced and distributed, each retailer
will receive the same product amount from all farms, T E = log I. For any supply network, given one infected retailer Rk,
the uncertainty in identifying Fi as the outbreak source (assuming the contaminant is produced in only one farm) is similar
to picking one out of 2T E(k) farms randomly. Consequently, T E provides a universal measurement for network traceability,
and may be used to guide the construction of food supply infrastructures45. Once given T E, the system is predictable as
choosing one randomly among 2T E sources, thus the expected prediction rate is 1/2T E . To further prove the effectiveness of
the notification of T E without the influence of specific observations, here is a simple example.

For example, given distributions A= {0.5,0.49,0.01} and B= {0.5,0.25,0.25}, the T E for A is T EA =−(0.5× log(0.5)+
0.49× log(0.49)+0.01× log(0.01)) = 0.7422, and the expected prediction rate is 1/2T EA = 0.5798; the T E for B is T EB =
−(0.5× log(0.5)+0.25× log(0.25)+0.25× log(0.25)) = 1.0397, and the expected prediction rate is 1/2T EB = 0.4864.

We can see that the entropy and predictability distinguish the differences of traceability uncertainty in A and B properly46.
Assuming we use a simple predictability algorithm to predict: always predict the source to be in the top X farms with highest
probability, then when X = 1, prediction rate on both A and B will be 0.5; when X = 2, prediction rate becomes 0.99 and 0.75,
separately.

The above example demonstrates the accuracy difference between T E and traditional prediction algorithm47, as distribution
A is more predictable than B, which can be measured from T E but not the prediction algorithm when X = 1.

Traceability Entropy Contribution
Additional contamination observations could rule out farms that are unable to reach some contamination retailers, which reduces
the uncertainties in identifying the outbreak source and enhance traceability. However, more quarantine objects aggrandize the
cost so that we need better traceability with less observation amount. Consequently, it is essential to define the traceability gain
of one more observation as Contribution.

If Rk1 has already been infected, and we find that Rk2(k2 6= k1) is also infected, the probability of S j being infected is

P(S j
∣∣Rk1 , Rk2) =

P(Rk1 |S j )P(S j)P(Rk2 |S j ,Sk1 )

P(Sk1 )P(Rk2 |Rk1 )
=

P(Rk1 |S j )P(S j)

P(Rk1 )
× P(Rk2 |S j )

P(Rk2 )
=

sr jk1×s j
rk1

× sr jk2
rk2

= rsk1 j×
sr jk2
rk2

= RSk1
k2 j , (7)

where RSk1 is the RS matrix of the k1th retailer, and RSk1
k2 j is the element at the k2th row and the jth column of RSk1 when Rk2 is

detected as infected.
Similarly, the probability of Fi being the outbreak source is:

P(Fi
∣∣Rk1 , Rk2) =

J
∑
j=1

P(S j
∣∣Rk1 , Rk2)×P(Fi

∣∣S j ) =
J
∑
j=1

RSk1
k2 j× s f ji =(ek2

T ×RSk1)× (SF× ei) . (8)

Consequently, the corresponding Traceability Entropy of network T E(k1,k2) =−
I
∑

i=1
P(Fi

∣∣Rk1 , Rk2) log(P(Fi
∣∣Rk1 , Rk2)).

And the contribution gained by Rk2 is defined as ∆T E(k2) = T E(k1,k2)−T E(k1).
On the contrary, if we find that Rk2 is not infected, the probability of S j being infected is:

P(S j
∣∣Rk1 , Rk2) =

P(Rk1 |S j )P(S j)

P(Rk1 )
× P(Rk2 |S j )

P(Rk2 )
=

P(Rk1 |S j )P(S j)

P(Rk1 )
× 1−P(Rk2 |S j )

1−P(Rk2 )
=

sr jk1×s j
rk1

× 1−sr jk2
1−rk2

= rsk1 j×
1−sr jk2
1−rk2

= RSk1
k2 , j

,

(9)
where RSk1 is the RS matrix of the k1th retailer, and RSk1

k2 , j
is the element at the k2th row and the jth column of RSk1 when Rk2

is detected as not infected.
Then, the probability of the ith Farm being the outbreak source is:

P(Fi
∣∣Rk1 , Rk2) =

J
∑
j=1

P(S j
∣∣Rk1 , Rk2)×P(Fi

∣∣S j ) =
J
∑
j=1

RSk1
k2 , j
× s f ji =(ek2

T ×RSk1
k2
)× (SF× ei) . (10)

Consequently, the corresponding Traceability Entropy of network T E(k1,k2) =−
I
∑

i=1
P(Fi

∣∣Rk1 , Rk2) log(P(Fi
∣∣Rk1 , Rk2)).

And the contribution gained by Rk2 is ∆T E(k2) = T E(k1)−T E(k1,k2).

8/11



Quarantine Strategy
In consideration of two possible situations (True/False) after detecting one potential infected retailer, we apply three classic
strategies adapted from Decision theory, to find the optimum quarantine solution: pessimistic strategy , optimistic strategy, and
hybrid strategy48.

Pessimistic strategy always chooses the maximum contribution from the test sample k2,k3, ...,kr ∈Ωk‘1 with the minimum
possible value of detection result, ensuring it is optimal event though the result of True/False detection is worse. Consequently,
the corresponding retailer Rkt (kt ∈Ωk1) is the next detection target, when

kt = argmaxmin{∆T E(kt),∆T E(kt)},kt ∈Ωk1 . (11)

Similarly, optimistic strategy always chooses the maximum value from contribution from the test sample within the
maximum possible value of detection result, thus the next detection retailer Rkt is

kt = argmaxmax{∆T E(kt),∆T E(kt)},kt ∈Ωk1 . (12)

Hybrid strategy always takes into account of both possible T/F results, and choose the maximum weighted traceability
contributions from the test sample, when

kt = argmax(P(kt)∆T E(kt)+(1−P(kt))∆T E(kt)),kt ∈Ωk1 . (13)
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