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Abstract
Middle East Respiratory Syndrome (MERS), bursting in the South Korea from May 2015 and mainly spreading within 

the hospitals at the beginning, has caused a large scale of public panic. Aiming at this kind of epidemic spreading swiftly by 
intimate contact within community structure, we first established a spreading model based on contact strength and SI model, 
and a weighted network with community structure based on BBV network model. Meanwhile, the sufficient conditions 
were deduced to ensure the optimal community division. Next, after the verification by the real data of MERS, it is found 
that the spreading rate is closely related to the average weight of network but not the number of communities. Then, as the 
further study shows, the final infection proportion declines with the decreases both in isolation delay and average weight; 
however, this proportion can only be postponed rather than decreased with respect to sole average weight reduction without 
isolation. Finally, the opportunities to take action can be found to restrain the epidemic spreading to the most extent.

1. Introduction
Middle East Respiratory Syndrome (MERS), first 
identified in Saudi Arabia in 2012, is a viral respiratory 
disease caused by a novel coronavirus. According to the 
World Health Organization (WHO), on 14th May 2013, 
there were 38 MERS cases, which grew further to 1150 
after two years (i.e., 31st May 2015). For human-to-human 
transmission, the virus does not appear to pass easily from 
person to person unless they have close contact, such as 
providing unprotected care to or living together with 
infected patients.

The epidemic status in the South Korea from 20th May 
2015 caused national public panic and worldwide attention. 
At the beginning, it spread evidently amongst the infectors 
and the patients in the same sickroom. This paper thus 
focuses on the spreading characteristics of intimate contact 
with community structure.

Nowadays, the studies of epidemics spreading are 
twofold: the spreading model of differential equation and 
the complex network theory. There are three spreading 
models widely used in the study of virus transmission, 
namely, SIR model, SIS model and SI model [1-4], and the 
solving algorithms are mainly based on percolation theory 
[5,6], mean field theory [7,8], and Markov chain theory 
[9,10].  For the complex network, Erdös [11] proposed the 
random network, while Strogatz [12] presented the small 
world network model with smaller average shortest path 
length and bigger clustering coefficient. Barabási [13] put 
forward the scale-free network model with both adding 
points and preferential attachment. According to the real 
network, the connections in many networks are not merely 
binary entities (i.e. either present or not), but have 
associated weights that record their strengths relative to 
one another. Thus, Barrat et al. [14] created the BBV 
model where point weight and edge weight evolve 
dramatically.

With the further study on the network topology, it is 

widely recognized that closely connected nodes and 
communities in social networks play an important role in 
topological properties and functional dynamics of involved 
complex networks [15,16]. As a result, there are many 
community division algorithms and accuracy indices such 
as modularity [17-20]. Based on the aforementioned 
models, Liu et al. [21] researched on the epidemic 
spreading through the network with small world effect by 
SIS model, while Smieszek et al. [22] studied that by SIR 
model. Salathé et al. [23] focused on the influence of 
community structure to virus transmission. In order to 
know about the virus transmission mechanism better, the 
dynamic models endeavor to slow down the outbreak rate 
and control the spreading range. Many different 
immunization strategies are proposed, such as random 
immunization [1], target immunization [8], and 
acquaintance immunization [24].

SI model is often applied to study on the epidemic 
dynamics at the early outbreak stages [25]. At the 
beginning, MERS in the South Korea were mainly 
concentrated in three hospitals with obvious characteristics 
of community structure. In reality, the infection probability 
increases with the raise of contact time between infectious 
people and susceptible people, which must be highlighted 
in the epidemic spreading models. Edge weight is essential 
to describe the contact intimacy. In order to study on the 
epidemic spreading characteristics and the optimal 
opportunity to take measures of MERS in the South Korea, 
it is supposed that there is a linear relationship between 
contact strength and contact time. In this paper, spreading 
model is based on SI model with contact strength, and 
weighted network with community structure is based on 
BBV network model. The spreading characteristics are 
obtained by simulation according to the aforementioned 
models. Hence, they are verified by the real data in the 
South Korea MERS epidemic.

The remainder of this paper is organized as follow. 
Section 2 demonstrates the spreading model based on SI 
model in view of contact strength. Section 3 establishes the 



weighted network with community structure based on BBV 
model and analyzes the characteristics. Then, the spreading 
characteristics are studied to find the effective factors in 
Section 4, where the epidemic spreading process is divided 
into five stages. Section 5 studies on the controlling 
measures (such as how to execute isolation, reduce the 
average weight of network), and the optimal opportunity to 
carry out them. Finally, case study based on MERS in the 
South Korea is demonstrated in Section 6 to verify the 
models and the measure effects. Overall, both theoretical 
analysis and simulation results focus on the spreading 
characteristics and measure effects.

2. Epidemic Spreading Model
In this section, supposing that the longer time the 
susceptible person contacts with the infectious ones, the 
larger probability the susceptible person will get infectious, 
at the beginning stage of the epidemic outbreak. In order to 
study on the epidemic spreading process, we propose the 
spreading model based on contact strength and the 
computer simulation flow chart.

2.1 SI Model Based on Contact Strength. During the study 
of epidemic diffusion theory, the models are always based 
on some assumptions that the infectious unit is the node in 
the network and the epidemic can only spread through the 
links. The individuals are divided into 3 types: S 
(Susceptible) means the healthy state which is likely to be 
infectious, I (Infected) indicates the illness state which has 
already been infectious, R (Removed) signifies the immune 
state which has always been recovered or dead.

In terms of some epidemic bursting suddenly without 
valid control, such as SARS, H1N1 [26], especially MERS, 
SI model is often used to study the spreading 
characteristics at the beginning period of diffusion process. 
Overall, prompt prevention measures would reduce the 
detrimental influence, which are of theoretical value and 
reality significance. 

When the contact strength to an infectious person is , 1T
the non-infectious probability of susceptible person is 
defined as: 

                  (1) 
1

01
T
T

Thus, when the contact strength to an infectious person 
is , the infectious probability of susceptible person is 0T
defined as:
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One susceptible person contacts to an infectious person 
with  strength, then leaves for a while, and then contact 1T
to the same infectious person with  strength. If he 3T
doesn’t get infection at the first time, he would be seemed 
as a healthy susceptible person at the second moment. That 
is, the two contacts are independent, and the non-infectious 
probability of susceptible person after second contact is:
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If one susceptible point contacts to two infectious points 
with strength  and , respectively, the non-infectious 4T 5T
probability of susceptible person after twice contact is:
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For susceptible point , the infection probability  is:i i
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where  indicates the edge strength between point  and ijT i
infectious point , 

 
means the sum of edge strength j ijj

T
between point  and its adjacent infectious points.i

 is defined as the average  of each point ijj
T ijj

T
in the whole network.

When the whole network is stable, the ratio of 
susceptible points is , and the ratio of infectious points  s t

is , then: i t
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In the actual infection process, the longer time the 
susceptible person contacts the infectious person, the larger 
probability of susceptible he will get infection. In other 
words, the edge strength between them magnifies. In 
conclusion,  is a formula  depends on time .ijT  ijT t t

For simplicity, it is assumed that there is a linear 
relationship between  and : ijT t t

                (8) ij ijT t t 
where indicates the coefficient of contact strength, ij

,  means the average , and signifies the 1ij   ij k
average point degree of network. Thus:
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The solution is:

        (10) 
   1ln 11

0

1

1 e 1
tt a a

i t
i

   


 

where  is the ratio of infectious points at time 0, and 0i

when , . t    1i t 

2.2 Simulation of Spreading Model. According to the 
above spreading model, the simulation flow chart is shown 
in Figure 1.
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FIGURE 1: Flow chart of the spreading model simulation.
In terms of susceptible point , the infectious probability i
 is:i
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where  is the edge weight,  is the infected moment ij sjt
for point , ,  are the parameters related to the j 0T 
epidemic spreading characteristics.

During the simulation process, the time step length is 
always the same as .0T

Epidemic spreads in the human-to-human network. After 
the construction of the epidemic spreading model based on 
the contact among people, we need to construct the 
network model. Due to the characteristics of people social 
contact, the weighted network model with community 
structure is essential to be constructed.

3. Network Model
This section establishes the weighted network with 
community structure and proposes the simulation process 
as the flow chart, then analyzes the sufficient conditions 
for the optimal community division. After that, the weight 
distribution and the community division characteristics are 
obtained [27].

3.1 Generation of Weighted Network with Community 
Structure. BBV network model is a weighted scale-free 
network model provided by Barrat et al. [14], which allows 
the dynamical evolution of weights during the growth of 
the system.

It is assumed that point  is within the community , i X

 indicates the strength of point ,  means the inner iA i I
iA

strength of point , and  signifies the outer strength of i O
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point , thus  i
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where means the edge weight between point  and ij i
point , if and  is disconnected, . If point  and j i j 0ij  i
point are in the same community, it is called edge weight j
inner the community, while if they are in two different 
communities, it is called edge weight outer the community.

Therefore, the evolution process of advanced BBV 
network is as follow:

STEP 1：Initial setup. There are  communities (i.e., S
) contributing to network . The initial 1 2 SX ,X , ,XL G

community has  nodes (all  are the same as ), 0rm 0rm m
connected by a small quantity of edges. And different 
communities are connected by several edges (without the 
inner links of points in the community), which constitutes 
the initial network. All initial edge weights are .0

STEP 2: Adding points. Adding a new point  in each i
time step, and choose an arbitrary community (assuming as 

) to join in. The new adding point is linked to the Xr

existing  points in the community as the  0r r rm m m

probability  (as shown in formula 1), and linked to  I
rp j

the existing 
 
points out of the community as  0ss

n n m
the probability  (as shown in formula 2). O

rp k
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STEP 3: Weight change. The new adding edge is 
endued with an initial weight , which leads to the 0
weight change of the inner community of conjoint point  j
and the outer community of conjoint point . The edge k
weights of the inner community are adapt to: 

 (where 、 、  are located at I I
jv jv jv iA     i j v

different communities), and the edge weights of the outer 
community are adapt to:  (where  

O O
kl kl kl kA     i

and  are located at different communities, and  and  k k l
are located at different communities), 、 are the I O
coefficients of weight enhancement. 

STEP 4：Weight normalization. After the 



construction of network, all the weights in the network are 
normalized. Assuming that the maximum edge weight of 
outer community is , the maximum edge weight of O

m
inner community is . Thus, the edge weights in the I

m
outer community of each point are normalized as ; O O

mi 
and the edge weights in the inner community of each point 
are normalized as .I I

mi 
Similar to the BBV network model, each community 

forms a BBV network; when  is big, all points in the S
whole network are connected to the edges out of the 
community to construct a BBV network. According to the 
mean filed theory [7, 8] and BBV network model [14], 
both the inner weight distribution and outer weight 
distribution of community are in accordance with the 
power law.

According to the above four steps, the network meets all 
restrictions are likely to be created as the simulation 
process of the weighted network with community structure 
in Figure 2.
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FIGURE 2: Flow chart of network model generation.

3.2 Sufficient Conditions for Community Division. After 
the network generation, further research need to analyze 
whether this kind of community division is the best. In this 
section, we study on the sufficient condition to reach the 
optimal community division by analyses of modularity.

Newman and Girvan [23] proposed the representation 

method of modularity  in the weighted network.Q
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In the formula,  is the sum of all edge weights in A

network ;  is the proportion of the sum edge weight G rre
of community  occupying the edge weight sum of whole r
network;  is the proportion of the sum point strength of rh
community  taken up in the whole network.r

Then, it is essential to verify the former network model 
generated by four steps, where the modularity is . Two 0Q
communities  and  are chosen arbitrarily from the Xr Xs

network, then one point  in community  is assigned to v Xs

community . Thus, the network modularity changes to Xr

, and the variation of modularity  is:1Q Q
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where  is the sum edge weight of the adjacent edges O

,v rA
between point  and inner points of community , v Xr

which names after the sum outer weight of community  r
of point ,  recorded as . v  O

,max r v rA
During the network generation, all communities are at 

the same level, but when the network scale is bigger, 
generally speaking, . Thus,r sh h
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Thus, if , it is indubitable that the former I O
,v v rA A

community division methodology always gets the optimal 
result. If  (  is the arbitrary point), it is surely I O

v vA A v
satisfied to the optimal restrictions. During the network 
construction period, all points need to be connected to 
more inner points of community with higher contact 
strength, and fewer outer points of community with lower 
contact strength.

After strict theoretical derivation and analyses, it is 
concluded that the sufficient condition to reach the optimal 
community division is . Plenty of simulations I O

,v v rA A
should be done to analyze the characteristics.

3.3 Characteristics of the Network
3.3.1 Characteristics of the Edge Weight. After the 
weighted networks with community structure are generated, 
the characteristics of network are studied further. It focuses 
on the relationship of four characteristics and the 
community amount, or the coefficient of weight growth, 
separately. The four characteristics are: the inner weight 
distribution of community, the outer weight distribution of 
community, the average inner weight of community and 
the average outer weight distribution of community.
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(a) The relationship of inner weight distribution of community and the 
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(b) The relationship of outer weight distribution of community and the 
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FIGURE 3: Relationship of weight distribution and the community 
amount.

In Figure 3, there are 5000 points, , 0 =3m m

, . 1n S m   I O= =1 
It is demonstrated in Figure 3 as log-log coordinate 

that the inner weight distributions of community obey the 
power law, which is . In terms of the inner  p   :

weight distribution of community,  slightly increases 
with the rise of ; while in terms of the outer weight S
distribution of community,  is generally high when  is  S
large, anyway it is not strictly monotonous.
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(a) Relationship of inner weight distribution of community and the 
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FIGURE 4: Relationship of community weight distribution and the 
coefficient of weight growth.

In Figure 4, there are 5000 points, , , 100S  0 =3m m

, . The less the value of  is,  1n S m  
I O= =   

the larger the value of  is which related to the inner 
weight of the community or the outer weight of the 
community. 

Figure 3 and 4 demonstrate that every BBV network is 
isolated independently with different communities, because 
the inner weight distribution of each community obeys the 
law power. However, the graph (a) in Figures 3 and 4 are 
both the statistical result of the inner weight within the 
community, and thus there is deviation between the 
simulation result and the power law distribution.

Supposing that  indicates the mean of inner  Imean 

weighs, 
 
signifies the mean of outer weight. Omean 



TABLE 1: Relationship of the average edge weight and the community 
amount.

S 50 100 150 200 250

 Imean  0.111 0.182 0.206 0.216 0.238

 Omean  0.062 0.089 0.097 0.145 0.135

In Table 1, there are 5000 points, , , 100S  0 =3m m

, . 1n S m   I O= =1 
With the increase of the community amount, the average 

inner weights of community get higher. Compared to the 
network with fewer communities, the average outer weight 
of community is relatively higher when the community 
amount is larger.

TABLE2: Relationship of the average edge weights and the coefficient of weight growth.
 0.5 0.55 0.6 0.65 0.7 0.8 0.9 1.0 1.5

 Imean  0.2806 0.2848 0.2885 0.2493 0.2519 0.2117 0.1846 0.1816 0.1067

 Omean  0.1858 0.1929 0.1832 0.1431 0.1352 0.1206 0.1098 0.0894 0.0611

In Table 2, there are 5000 points, , , 100S  0 =3m m

, .  1n S m   I O= =  
It is demonstrated in table 2 that with the growth of , 

both the inner and the outer weight distribution of 
communities have the trend of decrease.

After the simulation, it is concluded that the weight 
distributions obey the power law and satisfy the reality 
well. Moreover, the power law distribution characteristics 
rely on the parameters obviously, hence by control of 
which, any type of networks can be built.

3.3.2 Characteristics of the Community Structure. In this 
section, we will analyze the sufficient condition to satisfy 
the optimal community division, and explain whether the 
network has a clear community structure by calculating the 
value of the modularity.
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It is demonstrated that , and each point  I O
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meets the condition that . In conclusion, the I O
,v v rA A

community division with this method is optimal.

0 1000 2000 3000 4000 5000
10-2

10-1

100

101

the point number

va
lu

e

 

 

AI
v

maxr(A
O
v,r)

FIGURE 5: Comparison graph of  and . I
vA  O

,max r v rA

TABLE 3: Relationship of  value and community amount.Q
S 50 100 150 200 250
Q 0.6439 0.6728 0.6950 0.6147 0.6640

In Table 3, there are 5000 points, , , 100S  0 =3m m

, . And in Table 4, there are 5000  1n S m   I O= =1 

points, , , , .S=100 0 =3m m  S 1n m   I O= =  

TABLE 4: Relationship of  value and the coefficient of weight growth.Q

 0.50 0.55 0.60 0.65 0.70 0.80 0.90 1.0 1.5

Q 0.6090 0.6054 0.6158 0.6376 0.6554 0.6358 0.6281 0.6728 0.6397

In reality, the value range of  in the network with Q
community is [0.3-0.7], and it is demonstrated that there is 
obvious community structure in the network from Table 3 
and Table 4.

4. Characteristics of Epidemic Spreading 
This section studies the specific characteristics of the 
epidemic spreading based on the aforementioned models, 
including the infection proportion of epidemic spreading in 
different stages, and the relationship of transmission rate 
and the community amount, or the average network weight, 
or the strength of the initial infectious point, separately.

4.1 Influence of Community Amount to Epidemic 
Spreading. It is defined that the epidemic transmission rate 

 means the increase rate of the infection proportion. d
During the simulation process, the transmission rate   t
is defined as the amount of new infectious points in each 
simulation time step.

According to Figure 6, in terms of the infection 
proportion variation curve for 200 communities, given 4 
infection proportions, namely , , , ,  1t  2t  3t  4t

and known that ,            1 2 3 40 t t t t          
corresponding to , , , ( ), respectively. 1t 2t 3t 4t 1 2 3 4t t t t  



,  is the transmission rate at , , and given  2t  3t 2t 3t

. Therefore, the epidemic spreading     1 2 3min ,t t  
process can be divided into 5 stages:

Stage 1: The initial stage of spreading.
, where  is small, and the      10 t t     t

transmission rate is slow while the infection people are 
gathered in a small range.

Stage 2: The initial stage of outbreak.
, and the transmission rate increases      1 2t t t   

constantly but .   2t t 
Stage 3: The middle stage of outbreak. 

, and the infection rate is larger than      2 3t t t   

some value .  1t 
Stage 4: The end stage of outbreak.

, and the transmission rate decreases      3 4t t t   

constantly but .   3t t 
Stage 5: The end stage of spreading. 

, the infection proportion is larger than    4t t 
some value, and at this stage, the whole network is nearly 
infectious. 

In comparison with the multiple simulations, it is shown 
in Figure 6 that the relationship between the infection 
proportion with different community amounts and the 
increase of time step length.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time step length

in
fe

ct
io

n 
pr

op
or

tio
n

 

 

1.  50 communities
2.100 communities
3.150 communities
4.200 communities

FIGURE 6: Simulation graph of infection conditions with different 
community amounts.

In Figure 6, there are 5000 points, while the average 
inner weights of community are normalized as 0.1, and the 
average outer weights of community are normalized as 
0.05.

The four curves are shown in Figure 6, when the average 
weights are analogous, the four curves have similar 
variation trend at stage 2 to stage 5, and these four stages 
are irrelative to the community amount without any control 
measurements. Compared to curve 2 and curve 4, it is 
found that there is randomness in the initial spreading stage 
related to the sum weight of initial infectious points.

4.2 Influence of the Average Weight to Epidemic Spreading.
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(a) The relationship of the infection proportion and the average 
weights
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(b) The relationship of the infection rate and the average weights
FIGURE 7: Relationship between the average weights and the infection 

proportion or the infection rate.
In Figure 7, there are 5000 points and .=100S
The later four stages are related to the average weight of 

the whole network, and the bigger the mean is, the larger 
the maximum infection proportion would be, and the 
transmission rate reaches the highest at the initial stage of 
outbreak. It is the middle stage of outbreak that the average 
weight has most effects on, therefore reducing the weights 
in the network can postpone the outbreak to some extent. 

The parameters related to the infection ability affect the 
five stages. People barely have any effective measures to 
master the epidemic during the initial stage of spreading. 
This paper focuses on the control of large-scale epidemic 
spreading and the effective measures of nodes isolation and 
edge weights, although the impact of these parameters on 
epidemic spreading is not further studied in detail.

4.3 Influence of Initial Infection Strength to Epidemic 
Spreading

In Figure 8, there are 5000 points, , 100S 

, . It has been simulated  Imean =0.1  Omean =0.05
16 times when the strength of the initial infectious point is 
the maximum, and another 16 times when the strength of 
the initial infectious point is the minimum.

Figure 8 shows when the strength of initial infectious 
point is large, the continuous time at the first stage of 
epidemic spreading is shorter and more centralized after 
several times of simulation; when the strength of initial 
infectious point is small, the continuous time is longer and 
dispersive more randomly.
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FIGURE 8: Relationship of infection proportion and the strength of 
initial infectious point.

Through the simulation, it is concluded that the epidemic 
transmission rate has explicit relationship with the average 
weight of the network other than the community amount, 
especially at the later four stages of epidemic spreading. 
There is randomness at the first stage of epidemic 
spreading, while the larger the initial infectious point 
strength is, the less the randomness will be. Moreover, the 
first stage duration time is longer when the strength of the 
initial infectious point is less.

5. Measures to Control Epidemic Spreading
5.1 Measures to Isolate the Infectious Points. In reality, at 
the very beginning of the epidemic spreading process, it is 
hard to attract the public attention due to the minority of 
infectors [28]. However, we hope to control the epidemic 
at the initial stage of epidemic outbreak. Assuming there is 
a constant parameter related to the infection ability, it is 
concluded after several simulations that:

1. From the initial stage of outbreak to the end stage of 
epidemic spreading, the infection proportion is stable 
around the value . 1i i  

2. The stable  is related to  and . 1i i   0t 
The simulation result is demonstrated as Figure 9. There 

are 5000 points, , , , 100S  0 3m m   S 1 6n m   

, , . The amount of the initial I O= =1  0 1T  0.1 
infectious points is 10, and there are simulation curves at 
each .0t
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FIGURE 9: Relationship of  and the step length with different .  0t

It is defined that the extreme isolation delay  is 0t
signed as  which makes the final stable infection 0tm
proportion  satisfies , in terms of the infection i 0.9i 
probability  at . 0 1T 

TABEL 5: the relationship of  and . 0tm 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0tm 16 11 9 8 7 6 5 4

In Table 5, there are 5000 points, , , S=100 0 3m m 

, . S 1 6n m    I O= =1 
This section focuses on the influence of isolation delay 

on epidemic spreading, and obtains that timely isolation 
can reduce the final infection proportion , which i
indicates there is direct relationship between  and the i
isolation delay.

5.2 Measures to Reduce the Average Weight of Network. In 
reality, during the control process at the initial stage of the 
infectious epidemic, it exists infectivity for some viruses 
without any explicit symptoms [29]. Coupled with the 
isolation efficiency, it is difficult to put all infectious points 
isolated at the initial stage, in other words, it is hard to 
make  less. Accordingly, if only taking measurement as 0t
point isolation, the epidemic infection proportion  i
eventually reaches a large value, which is not conducive to 
control the epidemic spreading.

If the isolation measures are not taken in time, it is also 
required to control the whole network by other measures in 
order to better control the epidemic spreading. In reality, it 
is often acceptable that the healthy person should enhance 
the self-protection conscience and cut down the 
opportunities to contact with the infectious ones, which 
equals reducing the average weight of points and canceling 
some edges in the network model [30].

Nowadays, the widely acceptable methods to control the 
whole network include keeping away from public places 
and minimizing direct contact with each other as much as 
possible [31,32]. However, if measures are carried out too 
early or too much, it will change people's living habits, 
increase the economic loss and cause large-scale social 
panic; but if too late, it will lose the best opportunity to 
control the epidemic spreading.

It is demonstrated in Figure 7 that it can only postpone 
the epidemic outbreak other than cut down the final 
spreading proportion by reducing the average weight of the 
network. However, it is not useful to lessen the average 
weight of the network at Stage 1 (the initial stage of 
epidemic spreading), but to make point isolation. At Stage 
2 (the initial stage of outbreak), if the isolation delay  0t
cannot meet the requirements even when the infection 
proportion becomes , it is essential to take measures to i
decrease the average weight of the network. 

Figure 10 depicts the influence of different network 
average weights have on  after the point isolation.i
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FIGURE 10: Relationship of infection proportion and time step length 
after points isolation. 

In Figure 10, there are 5000 points, , 100S 
, , , , . 0 3m m   1 6n S m    0 1T  0.6  0 6t 

When the isolation measures are taken and the isolation 
delay  is constant, the less the average weight of the 0t
network is, the smaller the value of  would be.i

 In reality, once the epidemic outbreaks, the isolation 
measures should be taken, then, we can analyze the 
characteristics of epidemic spreading by statistical method 
and study on the isolation delay. It is necessary to take 
some measures to cut down the average weight of the 
network at stage 2 (the initial stage of outbreak). When it 
comes to stage 3 (the middle stage of outbreak), it is 
essential to decrease the average weight of the network, in 
order to make it come into stage 4 (the end stage of 
outbreak) and stage 5 (the end stage of spreading) as soon 
as possible.

6. Case Study on MERS
6.1 Case study of epidemic spreading characteristics. 
Epidemic spreading model based on contact strength was 
proposed in section 2, while weighted network model with 
community structure was proposed in section 3. However, 
real data is essential to verify whether the epidemic 
spreading result based on this model is convinced.

From the first MERS infection case was diagnosed 
definitely in the South Korea, there have been 166 people 
infected until 20 June 2015. The change trend of infection 
population during these 31 days is shown in Figure 11:
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FIGURE 11: Statistics of MERS infection population in the South 
Korea.

It is not until June 7th when the South Korea government 
actually issued a response to MERS, in consequence, the 
19 days from May 20th to June 7th should be regarded as 
the initial stage of the epidemic outbreak without 
interference measures, and the infection population is 87. 
The epidemic in this period mainly occurred in 3 hospitals, 
namely Pyongtaek Mary Hospital, Konyang University 
Hospital and Daejeon Hospital. They are considered as 3 
communities ( ), and the sum of points is regarded as =3S
the total amount of contact points in epidemic spreading 
network with the three communities. Then it is 
demonstrated in Figure 12 that the fitting result of the 
simulation data and the real-world data, where the infection 
proportion  means the ratio of infectious points in the 
total amount of points in the network. 
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FIGURE 12: Fitting result of the simulation infection proportion and 
the real-world data.

From May 20th to June 7th, the population is about 500-
1000 in the contact network of the three hospitals. Hence, 
the simulation parameters in Figure 12 are as follow: in 
terms of the network model, the total amount of points is 
600, , , , ,=3S 0 3m m   1 6n S m    I =0.2

; in terms of the epidemic spreading model,O =0.6
, , the initial amount of infectious points is 0 2.4T  0.1 

1. The real data curve is drawn by the MERS infectious 
population in the South Korea divided to 600.

Overall, due to the fitting result in Figure 12, the real 
initial stage of epidemic outbreak can be explained well by 
the network model and the epidemic spreading model 
proposed in this paper.

In this section, the accuracy of models in this paper is 
verified by comparison of the real data.

6.2 Case study of control measures. Figure 13 shows the 
comparison about the simulation result of infection 
proportion change with the increase of time step length and 
the real data after June 7th when the isolation measures 
were taken by South Korea government.

In Figure 13, there are 600 points, , , 3S  0 3m m 

, , ; and in the epidemic  S 1 6n m    I =0.2 O =0.6

spreading model, ， , the initial infection 0 2.4T  0.1 
population is 1, the isolation measure is taken at the 19th 



step, . The real data curve is drawn by the MERS 0 4t 
infectious population divided to 600.
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FIGURE 13: Comparative graph of simulation result and real 
data after the measures.

It is demonstrated in Figure 13 that the curve can fit the 
real infection proportion statistics curve when the isolation 
delay . However, the South Korea government took 0 4t 
measure at stage 2 (the initial stage of outbreak) actually, 
which is a little later. The simulation result is shown as 
Figure 14 if the measure were taken at stage 1 (the initial 
stage of epidemic spreading).
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FIGURE 14: Simulation result when the isolation measures are taken 
at stage 1.

In Figure 14, the network model and epidemic spreading 
model are the same as Figure 13, , but the isolation 0 4t 
measure is taken at the first step. The 6 simulation result 
curves are the 6 results with maximum  among the 100 i
times simulation.

Figure 14 demonstrates that if we could take measures at 
the very beginning of epidemic spreading, the final 
infection proportion  would be reduced significantly i
even with the same isolation delay. However, due to the 
abruptness of epidemic outbreak, it is difficult to master 
control at the early stage. Consequently, it is essential to 
reduce the average weight of the network by some 
auxiliary measures, for example, dissolving some 
organizations with evident community structure (such as 
schools), decreasing the stay time in public places, or 
canceling some public activities.

7. Conclusion 
MERS viruses are spreading swiftly at the very beginning 
period among the intimate human-to-human contact 
communities. The control measurements and the optimal 
opportunity to take action are proposed to study the 
spreading characteristics. Assuming that the contact 
strength has a linear relationship with time, the epidemic 
spreading model is established based on the SI model, 
which is the foundation of analytical solution research. The 
weighted network model with community structure is 
constructed on the basis of the BBV network model, 
deducing that the generated network meets the sufficient 
conditions for the optimal community division. The 
simulation results show that the weight distributions within 
the community and among the communities both obey the 
power-law distribution. 

According to the epidemic spreading network model, 
this research focuses on the characteristics of virus 
transmission. Hence, the epidemic spreading process 
would be divided into five stages: the initial stage of 
spreading, the initial stage of outbreak, the middle stage of 
outbreak, the end stage of outbreak, and the end stage of 
spreading. Then the simulation results show that the 
duration time of Stage 1 is related to the sum weight of the 
initial infection nodes, while which of Stage 2 to Stage 5 
are only related to the average weight instead of the 
community amount. However, without isolation measures, 
the decrease of the average weight only postpones 
spreading without interdicting it. 

There is always a time delay before patients being 
isolated, thus we study on the effects and optimal 
opportunity to master the epidemic spreading by two 
approaches: the point isolation and the average weight of 
network reduction. In conclusion, shorter time delay would 
reduce the final infection proportion, and with the same 
time delay, the decline of the average weight would further 
reduce the final infection proportion. The simulation data 
matches the real data of MERS in the South Korea well. 
Therefore, the measures are adopted as follow: firstly 
isolate the infectious points as soon as possible; if the 
infection proportion is higher than the setting threshold, 
then the average weight should be cut down to the 
corresponding value (e.g., canceling public activities, 
dissolving some organizations, and keeping away from the 
crowded places).

The models in this paper are also appropriate for the 
diffusion of terrorist forces or evil forces with intimate 
community structures. Since the proposed epidemic 
spreading model is based on the SI model, it is hard to 
simulate the condition in which infectious people recover 
or die after a period of epidemic outbreak. Moreover, it is 
supposed that there is a linear relationship between contact 
strength and contact time, which cannot mimic the reality 
very well. In the future, we will study on different diseases 
with different epidemic spreading models on the proposed 
weighted network model with community structure after 
the period of large-scale infection or immunization.
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